We use cookies to provide you with a better experience. If you continue to use this site, we'll assume you're happy with this. Alternatively, click here to find out how to manage these cookies

hide cookie message
79,994 News Articles

IBM makes 'laptop supercomputer' breakthrough

New design replaces electricity with light pulses

IBM claims to have made a breakthrough in chip design that could result in supercomputers that are the same size as laptops.

The technology, called silicon nanophotonics, replaces some of the wires on a chip with pulses of light on tiny optical fibres for quicker and more power-efficient data transfers between cores on a chip, said Will Green, research scientist at IBM. IBM said by replacing electricity with pulses of light, the technique can make data transfer between processor cores on a chip up to one-hundred times faster.

The technology, which can transfers data up to a distance of a few centimetres, is about 100 times faster than wires and consumes one-tenth as much power, Green said. The lower power requirement should reduce operational costs for supercomputers, he said.

"The silicon nanophotonic effort is a high-bandwidth, low-power technology for cores to communicate," Green said.

The technical basis of this research is the same science that led to the development of optical fibre and internet communications. Silicon nanophotonics brings similar optical communication on chips for centimetres instead of miles, Green said.

The improved data bandwidth and power efficiency of silicon nanophotonics will bring massive computing power to desks, Green said. "We'll be able to have hundreds or thousands of cores on a chip," Green said. Users will be able to render virtual worlds in real-time and have a better gaming experience, he said.

Modulators sitting in each core convert light into pulses that travels over optical fibres in the silicon chip. The modulators don't take up too much space on the chip, Green said.

Silicon nanophotonics is part of a long-term research project and could be implemented in chips within 10 to 12 years, he said.

More cores are being added to chips to boost performance, but electrical wiring that connects cores on current chips doesn't transfer data effectively in these situations, Green said. Electrical wiring suffers from overheating and data signals travel only a few millimetres from one core to another before breaking down, Green said. Silicon photonics sends signals for many centimetres in a power-efficient mode without an attempt to reconstruct the signal, Green said.

Though the technology shows potential to replace copper wires for data transfer on chips, electrical wiring still does well over short distances. Copper wire is essential for transistors in chips to communicate, while silicon nanophotonic technology is used for cores to communicate. "We're complementing the capabilities of copper with our optical technology," Green said.

In addition to IBM, there are a couple of start-up companies and labs in the US that are working on silicon nanophotonics technology, Green said. The IBM project was funded partly by Defense Advanced Research Projects Agency (DARPA), a division of the US Department of Defense.


IDG UK Sites

Samsung Galaxy Note 4 release date, price and specs UK: Is this the actual Note 4 - video

IDG UK Sites

How Apple, Adobe, Microsoft and others have let us down over UltraHD and hiDPI screens

IDG UK Sites

How Ford designs next-generation cars at its Melbourne Design Centre

IDG UK Sites

iPhone 6 release date, rumours, video, UK price & images: iPhone launch event confirmed for 9...